Beat the Heart Blocks

Cardiac Clinical Nurse Specialist APN, CCRN, CCNS-CSC-CMC

Beat the Blocks

- Complete RBBB
- Complete LBBB
- Bifascicular, Trifascicular Blocks
- 1st degree Heart Block
- 2nd degree Heart Block
- 3rd degree Heart Block

The Electrical Conduction System Creates an electrical impulse and transmits it in an organized manner to the rest of the myocardium

SA node	60-100 BPM
AV node	40-60 BPM
Purkinje cells	20-40 BPM

Basic Components of the Complex Deflections & Segments

- P Wave
 - Rounded, < 2-3 mm, \uparrow in hypertrophy
- QRS Segment
 - $\leq .12$ sec. & > 5 mm, transition occurs V3 or V4
 - presence of Q normal in children/elderly
 - Q wave sig. > 0.5 mm
- T Wave
 - < 5-10 mm, peaked in \uparrow K+
- U Wave
 - Follows T wave, present in \downarrow K+
- ST Segment
 - Isoelectric, sig. If > +1.0 above or below baseline
 - Depression = ischemia
 - Elevation = injury

- Bundle Branch Blocks are identified by duration of QRS complex
- Normal QRS duration 60 – 100 msec

Right Bundle Branch Block RBBB

Source: Garcia 12 Lead EKG 13:2 & 13:3

Right Bundle Branch Block RBBB

Causes

- Chronically increased right ventricular pressure, as in cor pulmonale
- Right ventricular hypertrophy
- A sudden increase in right ventricular pressure with stretch, as in pulmonary embolism.
- Congenital heart disease (atrial septal defect)

RBBB Criteria

- QRS > 0.12 sec or 120msec
- Slurred S wave leads I & V6
- RSR' pattern V1

Easy way:

- V1 = Positive, QRS > 0.12 sec
- Rabbit Ears

Source: Garcia. 12 Lead ECG

RBBB

Figure 13-7: If you see a Q wave in lead V_1 in the presence of RBBB, the first positive deflection is called an R^{$^{\circ}$} wave instead of an R wave.

- Half a rabbit ear
- QRS mostly postive

Source: Garcia. 12 Lead ECG

QRS = 134 ms

Left Bundle Branch Block LBBB

Source: Garcia 12 Lead EKG 13:19

Left Bundle Branch Block LBBB

- Higher mortality
 than RBBB
- Most often seen in large Anterior MIs
- Lower EFs
- Often seen in later stages of Heart Failure

Causes

- Dilated cardiomyopathy
- CAD
- Hypertension
- Infiltrative diseases of the heart
- Benign or idiopathic causes

LBBB Criteria

- QRS <u>></u> 0.12 sec or 120msec
- Broad, monomorphic R waves in I & V6, with no Q waves
- Broad, monomorphic S waves in V1; may have a small r wave

Easy way

- QRS <u>></u> 0.12 sec
- Negative V1 = Carrot

LVH, LBBB, LAD

Vent. rate	83	BPM	N
PR interval	206	ms	Ĩ
QRS duration	134	ms	T
QT/QTc	388/455	ms	ĉ
P-R-T axes	92 -34	218	1

Normal sinus rhythm

Left axis deviation

Left ventricular hypertrophy with QRS widening and repolarization abnormality Cannot rule out Septal infarct (cited on or before 29-APR-2005)

Abnormal ECG

No change

QRS = 134 ms

BBB = QRS > 0.12sec or 120msec

 LBBB = QRS > 0.12 sec, Negative QRS in V1 (carrot)

 RBBB = QRS > 0.12sec; Positive QRS in V1 (rabbit ears)

Incomplete Bundle Branch Block QRS in no man's land

Incomplete RBBB

- QRS 100 110 msec
- RBBB pattern

Incomplete LBBB

- QRS 100 110 msec
- LBBB pattern

Vent. rate PR interval QRS duration QT/QTc P-R-T axes	56 232 108 502/484 8 -49	BPM ms ms 257	Sinus bradycardia with 1st degree A-V block Left axis deviation Incomplete left bundle branch block ST & T wave abnormality, consider inferior ischemia ST & T wave abnormality, consider anterolateral ischemia Bradengad OT
			Prolonged Q1

Abnormal ECG When compared with ECG of 14-OCT-2009 07:07, Incomplete left bundle branch block is now Present

QRS = 108ms

Vent. rate	70	BPM
PR interval	160	ms
QRS duration	110	ms
QT/QTc	432/466	ms
P-R-T axes	29 16	170

Normal sinus rhythm Incomplete left bundle branch block ST & T wave abnormality, consider lateral ischemia Prolonged QT Abnormal ECG

When compared with ECG of 08-AUG-2003 10:24, Incomplete left bundle branch block is now Present Nonspecific T wave abnormality has replaced inverted T waves in Inferior leads

QRS = 110 ms

Vent. rate	80	BPM	Normal sinus rhythm
PR interval	128		Incomplete right bundle branch block
QRS duration QT/QTc P-R-T axes	108 404/465 66 60	ms ms 39	Borderline EČG No previous ECGs available

QRS = 108 ms

Vent. rate	80	BPM	Normal sinus rhythm
PR interval	128	ms	Incomplete right bundle branch block
QRS duration	108	ms	Borderline ECG
QT/QTc	404/465	ms	No previous ECGs available
P-R-T axes	66 60	39	

QRS = 106 ms

AV Nodal Blocks

First Degree AV Block Second Degree AV Block Type I Second Degree AV Block Type II Third Degree AV Block

The Electrical Conduction System Creates an electrical impulse and transmits it in an organized manner to the rest of the myocardium

Heart Blocks occur due to AV node disease

Basic Components of the Complex Deflections & Segments

- P Wave
 - Rounded, < 2-3 mm, \uparrow in hypertrophy
- QRS Segment
 - $\leq .12$ sec. & > 5 mm, transition occurs V3 or V4
 - presence of Q normal in children/elderly
 - Q wave sig. > 0.5 mm
- T Wave
 - < 5-10 mm, peaked in \uparrow K+
- U Wave
 - Follows T wave, present in \downarrow K+
- ST Segment
 - Isoelectric, sig. If > +1.0 above or below baseline
 - Depression = ischemia
 - Elevation = injury

- AV node correlates to the PR Interval
- Normal PR interval 120 – 200 msec

First-Degree AV Block

Not really a blockjust a delay in conduction

- Atrioventricular (AV) Block occurs when the AV Node fails to properly conduct the impulses from the atria to the ventricles
- Conduction to the ventricles will occur every time.....it...will...... just....be....... delayed.

AV node's function is to slow down the conduction from the SA node to allow the ventricles to fill up with blood.

In 1st degree block, the AV node is slowing down the conduction a bit too much.

First-Degree AV Block PR interval > 200 msec

First-Degree AV Block

Characteristics: 1st Degree

- ✓ P waves present with same morphology
- ✓ QRS are normal
- ✓ P:QRS has a 1:1 ratio (no missing QRS)
- ✓ Atrial Rate is regular
- ✓ Ventricular Rate is regular
- ✓ PR > 200 msec and remain constant
- \checkmark Looks like a normal sinus rhythm

PR 320 msec

Regularity: Yes; equal R to R Intervals

P Waves: Each paired with a QRS, each the same

- ✓ P waves present with same morphology
- \checkmark QRS are normal
- ✓ P:QRS has a 1:1 ratio (no missing QRS)
- ✓ Atrial Rate is regular
- ✓ Ventricular Rate is regular
- $\checkmark\,$ PR > 200 msec and remain constant
- \checkmark Looks like a normal sinus rhythm

Possible Causes

- Acute myocarditis
- Acute MI
- Cardiomyopathy
- Chronic Aortic Regurgitation
- Acute conduction system disease
- Hypothyroidism
- Hyperkalemia
- Get a DIG level Mild <u>digitalis toxicity</u>

Treatment

If pulse is normal, the patient will usually be asymptomatic so no treatment is needed.
Marriage Relationship and the Blocks

KEY: P wave = Wife QRS = Husband Pacer = Counseling

Normal sinus rhythm:

The wife (p wave) waits at home for the husband (qrs). The husband (qrs) come homes on time every night.

1st degree AV block:

The wife (p wave) is waiting at home. The husband (qrs) comes home late every night, but he always comes home and its at the same time every night.

Second-Degree AV Block

Two main types

- Mobitz I or Wenckebach
- Mobitz II

The Electrical Conduction System Creates an electrical impulse and transmits it in an organized manner to the rest of the myocardium

Heart Blocks occur due to AV node disease

This block is also a delay in the AV node/AV junction but instead of having the same delay, it gradually gets longer then drops a QRS

longer.....longer.....drop! it's a Wenckebach!

Mobitz I: 2nd Degree AV Block or Wenckebach

- PR interval progressively lengthens until a P wave is eventually blocked.
- PR interval after dropped QRS is the shortest
- Irregular Regular --- pattern

Examples of Mobitz I Second-Degree AV Block Wenckebach

Characteristics Wenckebach

- P waves present with same morphology
- QRS are normal and narrow
- Not a 1:1 ratio (missing QRS complexes)
- Atrial Rate is regular
- Ventricular Rate is irregular
- PR not constant (gets progressively longer)

Possible Causes

- Primary conduction system disease
- Ischemic heart disease
- Inferior wall MI
- Cardiomyopathy
- Rheumatic Fever
- Intense vagal stimulation
- Electrolyte imbalance
- Beta or Calcium channel blockers
- ***Digitalis toxicity

Treatment Usually benign – no treatment needed

Treat Only if patient is symptomatic SOB, hypotension, weakness, dizziness

Atropine First dose: 0.5mg bolus Repeat Q3-5 min Max 3mg

Transcutaneous Pacing

Atropine

Blocks vagal effects on the SA & AV nodes
Enhances conduction through AV node

Marriage Relationship and the Blocks

KEY: P wave = Wife QRS = Husband Pacer = Counseling

Normal sinus rhythm:

The wife (p wave) waits at home for the husband (qrs). The husband (qrs) come homes on time every night.

1st degree AV block:

The wife (p wave) is waiting at home. The husband (qrs) comes home late every night, but he always comes home and its at the same time every night.

2nd degree block type I (weinkebach):

The wife (p wave) is waiting at home. The husband (qrs) come home later and later every night until one night he doesn't come at all. **Note:** *Husband (qrs) must come home at least 2 nights in a row to see this pattern.* Second Degree AV Block Type II

It is less common

than TYPE I

more serious Mobitz II AV Block

Second Degree Type II

Classical

fppt.com

Indicates a problem below AV node/junctional area <u>Bundle of His</u> or <u>Bundle Branches</u>

It is <u>more serious</u> than TYPE I because the ventricular rate tends to be slower which causes Decreased CO

more serious because...

can proceed to Complete Heart Block

Mobitz II Second-Degree AV Block

- One or more P waves are blocked
- PR intervals are constant throughout the strip.
- Dropped QRS will march out with the p waves

Mobitz II Second-Degree AV Block

- One or more P waves are blocked
- PR intervals are constant throughout the strip.
- Dropped QRS will march out with the p waves

Examples of Mobitz II Second-Degree AV Block

Characteristics Mobitz Type II

- P waves present with same morphology
- ~QRS are normal and narrow
- Not a 1:1 ratio
- Atrial Rate is regular
- Ventricular rate is irregular (missing QRS complexes)
- PR is **CONSTANT** and complex is the same

Possible Causes

- Primary conduction system disease
- Ischemic heart disease
- Inferior wall MI
- Cardiomyopathy
- Rheumatic Fever
- Intense vagal stimulation
- Electrolyte imbalance
- Beta or Calcium channel blockers
- ***Digitalis toxicity

Treatment

- Transcutaneous Pacing or at bedside
- Stop Beta Blockers, Digoxin and Calcium Channel Blocker

- Stop narcotics
- Prepare for temporary or permanent pacer Consider the ACLS

If patient is symptomatic

SOB, hypotension, weakness, dizziness

Atropine First dose: 0.5mg bolus Repeat Q3-5 min Max 3 mg

Atropine

Bradycardia

Algorithm

·Blocks vagal effects on the SA & AV nodes Enhances conduction through AV node

Marriage Relationship and the Blocks

KEY: P wave = Wife QRS = Husband Pacer = Counseling

Normal sinus rhythm:

The wife (p wave) waits at home for the husband (qrs). The husband (qrs) come homes on time every night.

1st degree AV block:

The wife (p wave) is waiting at home. The husband (qrs) comes home late every night, but he always comes home and its at the same time every night.

2nd degree block type I (weinkebach):

The wife (p wave) is waiting at home. The husband (qrs) come home later and later every night until one night he doesn't come at all. **Note:** *Husband (qrs) must come home at least 2 nights in a row to see this pattern*.

2nd degree AV block type II:

The wife (p wave) is waiting at home. Sometimes the husband (qrs) comes home, sometimes he doesn't. When he does come home, its always at the same time.

Note: This is usually more serious than type I (weinkebach) and will sometimes require counseling (pacing).

Third-Degree or Complete AV Block

***No communication between atria and ventricles

Third Degree AV Block Complete Heart Block

The <u>most serious</u> block because no impulses are reaching the ventricles

ventricles

Third-Degree or Complete AV Block

- No communication whatsoever between atria and ventricles
- Two pacemakers by definition:
 - One supraventricular, one ventricular
- Atrial and ventricular rates are typically different.
- Key feature is that PR intervals are completely changing and have no effect on the ventricular rate.

Characteristics Complete Heart Block

- P waves present with same morphology
- QRS are narrow or wide
- Not a 1:1 ratio
- Atrial Rate is regular (p waves march out)
- Ventricular Rate is regular (QRS march out)
- PR is not constant

To compensate HIS bundle or Purkinje Fibers kick in

Ventricular Escape Rhythm Rate < 40 Wide QRS as the impulse starts In the Purkinje fibers

33	3	33																			
	0					٨			808.80 2020 2020 2020 2020				A					A			
						1															
1000	2002				5	[]		~		\sim		\sim		-	2		2				~
5	V	1					1							/					4/	(111) 1111 1111 1111 1111	
100							V			XXXX XXXX XXXX XXXX XXXX XXXX								8.808.8 8.8.8.8 8.8.8.8 8.8.8.8 8.8.8.8			

Examples Third Degree AV Block

Possible Causes

- Anterior or Inferior MI
- Myocardial ischemia
- Cardiomyopathy
- AV nodal damage
- Rheumatic Fever
- Electrolyte imbalance
- Digitalis/beta blocker/calcium channel blocker toxicity
- Mitral or Aortic valve replacement complications
- Cardiac cath/angioplasty

Treatment Depends on location of the block

Treatment

If the block is **lower** in Purkinje System area (QRS is **WIDE)**

- If Asymptomatic
 - Observe and treat causes
 - External pacer at bedside
- If Symptomatic SOB, Dizziness, Hypotension
 - Increase ventricular rate
 - External pacing
 - Prepare for temporary or permanent pacing
 - Dopamine 2-10mcg/kg/min
 - Epinephrine 2-10 mcg/min

Marriage Relationship and the Blocks

KEY: P wave = Wife QRS = Husband Pacer = Counseling

Normal sinus rhythm:

The wife (p wave) waits at home for the husband (qrs). The husband (qrs) come homes on time every night.

1st degree AV block:

The wife (p wave) is waiting at home. The husband (qrs) comes home late every night, but he always comes home and its at the same time every night.

2nd degree block type I (weinkebach):

The wife (p wave) is waiting at home. The husband (qrs) come home later and later every night until one night he doesn't come at all. **Note:** *Husband (qrs) must come home at least 2 nights in a row to see this pattern.*

2nd degree AV block type II:

The wife (p wave) is waiting at home. Sometimes the husband (qrs) comes home, sometimes he doesn't. When he does come home, its always at the same time.

Note: This is usually more serious than type I (weinkebach) and will sometimes require counseling (pacing).

3rd degree AV block:

Wife (p wave) is no longer waiting at home. She and her husband (qrs) are now both on separate schedules and have no relationship and they are no longer talking. Each spouse has a regular, individual schedule.

Note: This frequently requires counseling in the form of a temporary or permanent pacer.

Review

- Ist DEGREE not actually a block/merely a delay in conduction. Appears to be a NSR with a PR interval >0.20
- 2nd DEGREE TYPE I each beat is progressively delayed until one is blocked. PR gets longer and longer until a QRS complex is dropped.
- 2nd DEGREE TYPE II -the AV node selectively lets some beats through and blocks others. MORE SERIOUS of the two.
- 3rd DEGREE complete block at the AV node. 2 separate pacemakers

"THE HEART BLOCK POEM"

If the R is far from P, then you have a FIRST DEGREE.

Longer, longer, longer, drop! Then you have a WENCKEBACH.

If some Ps don't get through, then you have MOBITZ II.

If Ps and Qs don't agree, then you have a THIRD DEGREE.

11 mV

Wenchebach

trock (type I)

Mobitz II block (no warning)

QRS < P-theouency

1 mV

0.28 s

P

0.25 %

Second - degree

0.18 5

Second - degree AV - block P

AV - block

Practice

Practice & Application Time

For each EKG

- Identify any BBB present
- Identify any heart blocks

EKG 1

fppt.com

fppt.com

tppt.com

EKG 4

Vent. rate	52	BPM
PR interval	*	ms
QRS duration	138	ms
QT/QTc	720/669	ms
P-R-T axes	* 92	31

Heart Blocks

fppt.com

EKG 8

HR	47
PR	313
QRSD	197
QT	533
QTC	472
AX	TS
P	102
ORS	-8

QRS -8 T 176

tppt.com

Answers

- 1. RBBB
- 2. LBBB
- RBBB with ST elevation anterior, septal, lateral leads → cath lab
- RBBB + Third Degree (Complete) Heart Block with ventricular escape rhythm → pacemake3rr
- 5. Wenckebach
- 6. 2nd Degree Heart Block, Mobitz II
- 7. 3rd Degree Heart Block with ventricular escape rhythm
- 8. Sinus Bradycardia with 1st Degree AV Block and LBBB