Pulmonary Issues in Cardiac Patients

LIMA/RIMA Complications:

- Phrenic nerve devascularization LIMA
 - Can cause inability or delayed vent weaning
- Spasm (ST segment changes)
 - Diltiazem or Nitroglycerin
- Steal syndrome
- Sternal ischemia
- Brachial plexus injury
 - Limp or paralyzed arm, lack of muscle control in upper extremity
- Pulmonary complications due to pleural dissection
 - Pleural effusion

Phrenic Nerve Injury Causes

- Cold injury to nerve from cardioplegia solution
- Surgical trauma during takedown of IMA

CABG x 4 with Post op CXR

Elevated right diaphragm

Acute Resp Failure R/T phrenic nerve injury

- Phrenic nerve is responsible for diaphragmatic contraction
- Phrenic nerve injury may be associated with unilateral or bilateral neuropathy or paralysis
- With partial injury of one or both phrenic nerves lower lobe atelectasis may occur – esp on the left side
 - Delay of weaning
 - Decreased ability to clear secretions

Phrenic Nerve Injury

Unilateral

- Few respiratory symptoms
- Nocturnal orthopnea
- Dyspnea on exertion
- Patients can be extubated without difficulty

Bilateral - rare & serious

- · Paradoxical breathing
- Tachypnea
- CO2 retention when attempts are made to wean & extubate
- CXR may show elevated hemidiaphragm at end expiration of spontaneous ventilation (won't see if patient is on the vent)

6

Phrenic Nerve Treatment

- Usually resolves in 3 12 months but may take 2 years
- Plication of the diaphragm attempts to stabilize the diaphragmatic muscle and prevents paradoxical motion with breathing

Management of Recovery from Anesthesia

8

Hand Off Communication

• Vital information exchanged between the anesthesia provider and ICU RN

Immediate postop care Objectives

- 1. Maintenance of cardiac output
- 2. Maximization of tissue perfusion

10

Induction Agents Augment the effects of inhalation agents

Barbiturates

- Depress the CNS
- Cause respiratory depression
- Thiopental sodium
- Methohexital

Benzodiazepines

- Midazolam (Versed)
 - Watch for resp depression
 - May be used for post op N/V
 - Reversed with Flumazenil (Romazicon)

Nonbarbituarates

- Etomidate
 - Hypnotic agent no analgesic effects
 - Agent of choice in pt with CV instability as less likely to cause hypotension.
- Propofol (Diprivan)
 - Sedative
 - Causes less myocardial depression than barbiturates
 - Causes hypotension
 - Causes less post op N/V than Etomidate

Inhalation Agents

- Cause circulatory depression and hypotension as result of vasodilation & ↓ contractility
- Observe for Ventricular ectopy (VT/VF)
- Don't have analgesic properties
- Sevoflurane & Halothane
 - Respiratory depressants
- Enflurane & Isoflurane
 - May cause noncardiogenic pulm edema
 - Enflurane has residual CNS depressant effects

Neuromuscular Blocking Agents (NMBA)

- Adjunct to inhalation agents
- Provide relaxation of skeletal muscles
- Facilitate intubation
- Decrease shivering
- Effects prolonged in pt with severe liver disease
- No amnesic or analgesic effects
- Do not cause LOC

- Rocuromium
- Vecuronium
- · Succinylcholine
- Inadequate reversal may cause return paralysis in the early postop period

13

Opioids

- Analgesic or induction agent
- Decrease response and perception to pain
- Monitor for bradycardia
- Post op N/V common SE

Fentanyl

14

Post op Nausea/Vomiting (PONV)

- ↑ risk of aspiration
- Disrupts surgical repairs secondary to retching
- ↑ post op bleeding
- Causes electrolyte imbalances/dehydration
- May cause esophageal
 tears

Prophylactic antiemetics

- Ondansetron(Zofran)
- Promethazine (Phenergan)
- Prochlorperazine (compazine)

15

Thermoregulation (hypothermia)

- Alters drug metabolism causing delays in emergence fro anesthesia
- Causes a disruption of the coagulation pathway, ↑ the need for blood transfusions
- Delays wound healing; †risk of surgical site infections
- Causes shivering → ↑ myocardial oxygen demand and consumption

16

Post op Respiratory Management

- Early extubation should be the goal for all patients; within 4 – 12 hr postop
- · Extubate if:
 - Adequate muscle strength (able to hold head off bed for 5-10 sec)
 - Adequate pulmonary function
 - Spont TV > 300 ml
 - NIF at least -20 25 cmH20
 - Minute volumne no greater than 10L/min
 - Vital capacity 10 15 mL/kg
 - Hemodynamic stability & no bleeding

Extubate when:

- ABGs within parameters
- Stable Hemodynamics/no bleeding
- Resp. rate < 25-30bpm
- HR < 130bpm
- SaO2 > 95-96%
- Spont TV > 300-600cc
- FIO2 < 70%

Extubation

- Suction mouth
- Deflate cuff --- ascertain a leak is presence
- Instruct pt to take a deep breath and
- Remove tube toward the end of the couah
- Placed low flow oxygen nasal cannula

Stir-up Regime

- Used in the immediate postop period if they received an inhalation agent
- Inhalation agents cause respiratory depression and are eliminated by ventilation
- Elevating the HOB and encouraging deep breathing and coughing

Post-extubation

- Administer O₂
- Monitor patient
 - Bilateral breath sounds
 - Stridor or ↑ respiratory effort
 - Strength of voice and cough
- Keep HOB ↑
- Pain control
- · Incentive spirometry
- Early ambulatation

Complications related to extubation

Laryngospasm

- Partial or complete blockage of airflow into or out of the lungs from spasms of vocal cord
- Rocking respirations
- Wheezing
- Stridor
- Dvspnea
- Use of accessory muscles
- Encourage to cough
- May require reintubation or
- Positive pressure breathing
- Lidocaine may be helpful

Noncardiogenic

pulmonary edema May be triggered by

- laryngospasm
- Rapid onset • Agitation
- Tachypnea
- · Tachycardia
- ↓ oxygen saturation
- · Pink, frothy sputum
- Crackles
- Maintain airway
- Diuretic
- May require PEEP

22

Complications related to extubation

Bronchospasm

- · Constriction of bronchial smooth muscles after extubation
- Resolves quickly after airway irritants are eliminated
- Wheezing
- Dyspnea
- Tachypnea
- Treat with bronchodilator and humidified oxygen

Hypoventilation and Hypoxia

- Treat underlying cause
- Ensure adequate reversal of opiods and NMBAs prior to extubation

Malignant Hyperthermia

- Triggered by certain anesthetic agents (succ)
- Muscle rigidity of jaw, tachypnea, tachycardia, ↑ CO₂, cyanosis, resp and metabolic acidosis, ↑CPK, ↑ K, ↑ temp
- · May occur up to 24 hours postop
- · Cool, Dantrolene sodium

Arterial Blood Gases

NORMAL ABG VALUES

ROMS for ph and pCO2

- R = Respiratory
- O = Opposite
- M = Metabolic
- S = Same

Respiratory Acidosis pH↓ pCO₂↑ рН↑ pC0₂↓ **Respiratory Alkalosis Metabolic Acidosis** pH ↓ pCO₂↓ **Metabolic Alkalosis** рН↑ pCO₂↑

27

Respiratory Acidosis

□ pH □ pCO₂

Reasons:

Sedation: Anesthesia, pain meds

Hypoventilation

Cause: Result of COPD, Pulm Edema, Pneumonia

Head Injuries: trauma, CVA, spinal cord

injuries

Neurological Diseases: MS or ALS, Guillain Barre'

Chest trauma: flail chest or fx ribs

Respiratory Alkalosis

T pH □ pCO₂

Cause: Result of Hyperventilation Reasons:

Pain, fever, anxiety

PE, high altitudes, Aspirin OD

Head Injuries: trauma, CVA, spinal

cord injuries

Hypoxia: While attempting to take in Hypovolemic Shock, Pulmonary Edema, CHF, ARDS, GI Bleed

Metabolic Acidosis

Cause: Retention of Acid OR Loss

Base

Reasons:

HCO₃

Aspirin Overdose Drug Overdose

Starvation Severe Inf with fever

Renal Failure

Diarrhea

Diabetic Ketoacidosis

Pancreatitis

Shock, Sepsis

(anaerobic metabolism)

Metabolic Alkalosis

<u></u> рН

Cause: Retention of Base OR

Loss of Acid

THCO3

Reasons:

Prolonged Vomiting

Diuretics, Hypokalemia

Antacids

Cushing's Syndrome Hypoaldosteronism

Sodium Bicarb administration

Interpret these ABGs:

pH	7.28
PCO2	60
pO2,	83
HCO3	28
Base Excess	0.5
O2 Sat	94
CO2 Total	30

- A. Respiratory Acidosis
- B. Respiratory Alkalosis
- C. Metabolic Acidosis
- D. Metabolic Alkalosis
- E. Normal

Interpret these ABGs: ANSWER

pН	7.28
PCO2	60
pO2,	83
HCO3	28
Base Excess	0.5
O2 Sat	94
CO2 Total	30

- A. Respiratory Acidosis
- B. Respiratory Alkalosis
- C. Metabolic Acidosis
- D. Metabolic Alkalosis E. Normal

Based on the ABGs, interventions should include

pH	7.28
PCO2	60
pO2,	83
HCO3	28
Base Excess	0.5
O2 Sat	94
CO2 Total	30

- A. Patient is hypoxic, increase oxygen
- B. Stimulate patient or possibly BiPAP or increase TV or rate on ventilator (if ventilated)
- C. Patient may be in DKA, check blood glucose
- Patient is hyperventilating, encourage to take slow deep breaths
- E. Check Nasogastric tube for large output

Based on the ABGs, interventions should include ANSWER

- A. Patient is hypoxic, increase oxygen
- pH
 7.28

 PCO2
 60

 pO2,
 83

 HCO3
 28

 Base Excess
 0.5

 O2 Sat
 94

 CO2 Total
 30
- B. Stimulate patient or possibly BiPAP or increase TV or rate on ventilator (if ventilated)
- C. Patient may be in DKA, check blood glucose
- D. Patient is hyperventilating, encourage to take slow deep breaths
- Check Nasogastric tube for large output

37

60 kg patient on vent after opioid overdose. AC 16, TV 450, PEEP 5. Interpret these ABGs

pH	7.51
pCO2	24
pO2	120
Base Deficit	2.4
O2 Sat, Art	99
TCO2	19

- A. Respiratory Acidosis
- B. Respiratory Alkalosis
- C. Metabolic Acidosis
- D. Metabolic Alkalosis
- E. Normal

38

60 kg patient on vent after opioid overdose. AC 16, TV 450, PEEP 5. Interpret these ABGs ANSWER

pH	7.51
pCO2	24
pO2	120
Base Deficit	2.4
O2 Sat, Art	99
TCO2	19

- A. Respiratory Acidosis
- B. Respiratory Alkalosis
- C. Metabolic Acidosis
- D. Metabolic Alkalosis
- E. Normal

39

60 kg patient on vent after opioid overdose. AC 16, TV 450, PEEP 5. Interventions for these ABGs (same patient)

pH	7.51
pCO2	24
pO2	120
Base Deficit	2.4
O2 Sat, Art	99
TCO2	19

- A. Extubate
- B. Increase TV to 550
- C. Patient may be in DKA, check blood glucose
- D. Decrease TV or rate and switch to SIMV
- E. Check Nasogastric tube for large output

40

60 kg patient on vent after opioid overdose. AC 16, TV 450, PEEP 5. Interventions for these ABGs (same patient) ANSWER

pН	7.51
pCO2	24
pO2	120
Base Deficit	2.4
O2 Sat, Art	99
TCO2	19

- A. Extubate
- B. Increase TV to 550
- C. Patient may be in DKA, check blood glucose
- D. Decrease TV or rate and switch to SIMV
- E. Check Nasogastric tube for large output

Pt found unresponsive and brought to ED. Labs on admission. Interpret these ABGs

pН	7.17
PCO2	11
pO2	150
HCO3,	4.2
Base Deficit	21.7
Lactic Acid	7.17
Sodium	115
Potassium	3.1

- A. Respiratory Acidosis
- B. Respiratory Alkalosis
- C. Metabolic Acidosis
- D. Metabolic Alkalosis
- E. Normal

Pt found unresponsive and brought to ED. Labs on admission. Interpret these ABGs **ANSWER**

pН	7.17
PCO2	11
pO2	150
HCO3,	4.2
Base Deficit	21.7
Lactic Acid	7.17
Sodium	115
Potassium	3.1

- A. Respiratory Acidosis
- B. Respiratory Alkalosis
- C. Metabolic Acidosis
- D. Metabolic Alkalosis
- E. Normal

Pt found unresponsive and brought to ED. Labs on admission. Based on the ABGs, you would anticipate treatment for:

pН	7.17
PCO2	11
pO2	150
HCO3,	4.2
Base Deficit	21.7
Lactic Acid	7.17
Sodium	115
Potassium	3.1

- A. Pulmonary embolus
- B. Pulmonary edema
- C. Cocaine overdose
- D. Diabetic Ketoacidosis

Pt found unresponsive and brought to ED. Labs on admission. Based on the ABGs, you would anticipate treatment for:

pН	7.17
PCO2	11
pO2	150
HCO3,	4.2
Base Deficit	21.7
Lactic Acid	7.17
Sodium	115
Potassium	3.1

- A. Pulmonary embolus
- B. Pulmonary edema
- C. Cocaine overdose
- D. Diabetic Ketoacidosis

As Easy as Black & White CXR Interpretation

Power Point Handout available at www.cherylherrmann.com

References

- Connolly M A. Black, white, and shades of gray: Common Abnormalities in chest radiographs. AACN Clinical Issues. 2001;12(2):259-289.

 Lacey G, Morley S, et Berman L. The Chest X-ray: A Survival Guide. Philadelphia: Saunders/Elsevier.2008

- Saunders/ pissevier. 2008 Siela D. Chest radiograph evaluation and interpretation. Advanced Critical Care. 2008;19(4):444-475. Huseby JS, Ledoux D. Radiologic Examination of the Chest. In: Woods SL, Froelicher S, Motzer SA, Bridges, E J,ed. Cardiac Nursing, 5th ed. Philadelphia: Lippincott Williams & Wilkens. 2005: 296-306.