

Increased SVR due to vasoconstriction

Alarming Consequences of Acidosis Decreased cardiac contractility & cardiac output Impaired response to catecholamine (ie intropes are not effective) Increased PVR Vasodilation - decreased SVR Bradycardia Increased arrhythmia risk Coagulopathy Compensatory hyperventilation.

Metabolic Acidosis

- Type B Lactic Acidosis
 - Occurs in the absence of tissue hypoxia
 - May be catecholamine-induced metabolic effect (especially with epinephrine)
 - May be caused by hyperglycemia & alterations in fatty acid metabolism

Injury from surgery disrupts normal regulatory mechanisms Ŧ

- Plasma glucose elevates during surgery
- Insulin secretion is depressed during surgery

Elevated blood levels of catabolic hormones render patient resistant to insulin.

Metabolic changes are proportional to the degree of surgical stress.

Ŧ

Ŧ

Ketones form as a result of incomplete oxidation.

Ŧ

- Large quantities of body fluid are needed for renal excretion of glucose and ketones.
- This may result in hypovolemia.

The inability of kidneys to remove excess glucose with hypovolemia prompts further rise in glucose.

Ŧ

Ŧ

Metabolic Acidosis may develop within hours.

K+ increases as response to hyperglycemia.

K+ is redistributed from within the cell to the extracellular space as a result of increased plasma osmolality.

₩ Insulin corrects the abnormality.

Date/Tim e	1600	1830	2030	2300	0200	0600
PH	7.47	7.32	7.27	7.19	7.28	7.38
PCO2	31	42	44	34	33	34
PO2	192	156	92	115	85	87
CO2 conc	24	24	20	14	16	21
O2 Sat BE O2 flow Rate/mode	99 -1 100% IMV 10	99 -4 80% IMV 10	95 -8 60% ™∨10	97 -14 60% IMV 10	95 -10 ^{50%} IMV 6	96 -5 50% CPAP
K+	3.9	4.0	2.9	3.5	4.9	
Glucose Treatment			Regularin 20 SQ 2 ambs Bi	414 Isulin 5 Units IV	322 20 units SQ insulin	221

Date/Tim e	2400	0600	
PH	7.40	7.26	
Pco2	34	46	
PO2	110	91	
CO2 conc	22	22	
O2 Sat BE O2 flow Rate/mode	98 - 3 50% IMV10	96 - 7 50% IMV 4	
K+ Glucose Treatment	5.0	5.3 327	

If Potassium is LOW, Be Careful when giving...

- Insulin
- Calcium
- Digoxin

Serum glucose should not decrease more than 75 - 100 ml/dl per hour to prevent...

- Hypoglycemia
- Hypokalemia
- Cerebral Edema

₽₽[₽]

Severe hypoglycemia can lead to coma and death!

Interpret thesePatient APatient B1. Pt A = Respiratory Acid Pt B = Metabolic Acidosph 7.29 7.33 pCO2 60 41 2. Pt A = Metabolic AcidospO2 132 100 Pt B = Respiratory AcidTCO2 31 22 3. Both metabolic AcidosQ2 $\%$ 98 98	Adri	ISSIO	ABGS	
Patient APatient B1. Pt A = Respiratory Acid Pt B = Metabolic Acidosph 7.29 7.33 pCO2 60 41 2. Pt A = Metabolic Acidosp02 132 100 Pt B = Respiratory AcidTCO2 31 22 3. Both metabolic AcidosO2 % 98 98				Interpret these
ph 7.29 7.33 Pt B = Metabolic Acidos pCO_2 60 41 2 . Pt A = Metabolic Acidos pO_2 132 100 Pt B = Respiratory Acid TCO_2 31 22 3 . Both metabolic Acidos O_2 % 98 98	Patier	nt A	Patient B	1. Pt A = Respiratory Acidosis
$\begin{array}{ccccccc} pCO_2 & 60 & 41 & 2. \ Pt \ A = \ Metabolic \ Acidos \\ pO_2 & 132 & 100 & Pt \ B = \ Respiratory \ Acid \\ TCO_2 & 31 & 22 & 3. \ Both \ metabolic \ Acid \\ O_2 \ \% & 98 & 98 \end{array}$	ph	7.29	7.33	Pt B = Metabolic Acidosis
$\begin{array}{cccc} pO_2 & 132 & 100 \\ TCO_2 & 31 & 22 \\ O_2 & 98 & 98 \end{array} \xrightarrow{Pt B = Respiratory Acid}$	pCO ₂	60	41	2. Pt A = Metabolic Acidosis
TCO ₂ 31 22 3. Both metabolic Acido O ₂ % 98 98	p0 ₂	132	100	Pt B = Respiratory Acidosis
O ₂ % 98 98	TCO ₂	31	22	3. Both metabolic Acidosis
-2	O ₂ %	98	98	
BE -1 -6 4. Both Respiratory Acido	BE	-1	-6	4. Both Respiratory Acidosis

ΗĦ.

Metabolic Acidosis Ongoing Metabolic Acidosis means something is not being perfused

- Type A Lactic Acidosis
 - Reflects impaired tissue oxygenation & anaerobic metabolism resulting from circulatory failure
 - The lactate ion more than the acidemia contributes to potential cardiovascular dysfunction

Ŧ.

The Value of Lactate

- Serum lactate levels are used to assess the acid-base state and adequacy of tissue perfusion
- By product of anaerobic metabolism if tissue hypoxia (from hypoperfusion) exists
- A change from aerobic to anerobic metabolsim

- Lactate is primarily excreted by liver.
- Treatment: Treat the Cause
- NaHCO₃ (Bicarb) is truly only a "Band-Aid" and should only be used for severe metabolic acidosis
 = ph < 7.2 & HCO₃ < 6mqEq/L

Treat the Cause!

[⊭] The Value of Lactate

Serial lactate levels predictor of perfusion

- Normal <2.5mmol/L
- Mild acidosis 2.5-4.9mmol/L (mortality 25-35%)
- Moderate acidosis 5.0-9.9mmol/L (mortality 60-75%)
- Severe acidosis > 10mmol/L (mortality > 95%)

Shoemaker, WC et al. Textbook of critical care. 1995. WB Saunders

Surviving Sepsis 2

- Normal 1-2
- Cells are alive & well
- Moderate 2 4
 - DECREASED cellular perfusion
 - Cells STRUGGLE to survive
 - May indicate severe sepsis
- Severe > 4
 - COMPLETE TISSUE HYPOXIA
 - Cells DIE
 - Hypotension refractory to adequate fluid resuscitation indicates septic shock

Surviving Sepsis Campaign 2014

Stages of Shock

Compensated

μĒ

- · Maintains end organ perfusion
- BP is maintained by [↑] heart rate (tachycardia)
- Uncompensated
 - Decreases micro-vascular perfusion
 - S/S of end organ dysfunction
 - Hypotensive
- Irreversible
 - Progressive end organ dysfunction

T.

Serum Lactic Acid Levels

- May be the first indication that something is wrong
- Excess lactate demonstrates measurement of tissue oxygen debt
- Results in metabolic acidosis due to tissue hypoperfusion and "starvation"

F

Serum Lactic Acid Levels

- Increasing lactic acid levels mean the tissues are hypoperfused and patient is getting worse.
- Decreasing lactic acid levels mean the tissues are getting perfused and the patient is getting better.

Do not draw lactate levels more than every 4 hours Lactate level takes 4 hours to rise and 4 hours to release

Ŧ

Base deficit/excess

- Amount of total base (buffer) that is needed to achieve acid-base balance.
- BD/BE is depicted by HC0₃.Cl, phosphates, sulfates, proteins and organic acids. To figure BD/BE, lab uses the PH, PaCo2 and Hct.
- Normal -2- +2
- ✓ If < 2, the patient is not perfusing

Base deficit

- ♥ Normal -2 to +2
- Mild Hypoperfusion: -2 to -5
- Moderate Hypoperfusion: 6 to -14
- Severe Hypoperfusion: < 15

Which patient are you more concerned about?

	1.0600	2.0800
PH	7.37	7.35
PCO2	36	32
PO2	77	87
CO2	22	18
O2%	94	96
BE	-4	-8

Acidosis Summary
 Acidosis is the #1 negative inotrope!
 Acidosis decreases cardiac contractility!
 Treat acidosis so intropes work!
 Direct therapy to improve oxygen delivery and reducing demand and thus decrease acid production.

Source: Davis J et al: Journal of Trauma, 1996. Davis K et al. Journal of Trauma, 2002

Signs & Symptoms

- ▼ CT bleeding > 100 200 cc/hr
- Low or labile B/P
- Low CVP or PAD
- Abnormal clotting Factors
- Bleeding from line sites, incisions

F

Treatments

- Monitor CT output. May need to replace CT output cc for cc with packed cells
- Keep sedated and keep B/P < 140 to prevent stress on suture lines
- Keep CT patent by gently milking and stripping
- Use warming blanket to keep normal thermic.
 - Hypothermia interferes with clotting factors

Ŧ

Treatment: Blood and Blood Products

- Give blood and blood products
- FFP for ↑ PT or PTT
- Platelet Phoresis for \downarrow Platelet count
- Cryoprecipitate for \downarrow Fibrinogen level
- Packed cells for \downarrow H & H

₽₽

Rule of thumb

- Replace CT output ml for ml
- Minimum after every 4th unit pRBCs
 - Calcium Chloride
 - FFP
- Recommend 1 pRBC to 1 FFP

٣

Treatments

- Pharmacological Interventions
 - Protamine to reverse effects of systemic heparinization
 - Aminocaproic Acid (Amicar) to inhibit conversion of plasminogen to plasmin
 - Desmopressin to improve platelet function
 - Recombinant Activated Factor VII (NovaSeven) stimulates the generation of thrombin
- May need to return to surgery to repair mechanical cause of bleeding


~~~	ivo U	omorrh		Drotooc
a55	п	emorn	laye	
Cooler #	PRBC's	Plasma (FFP) Expire in 24 hrs	Platelets – Given per Lab results	Cryoprecipitate – per physician order – for fibrinogen <100mg/dL 8 min. to thaw
1	4 units O neg. uncrossmatched			
2	6 units	4 units - Given after 10 units PRBC's and/or per labs	1 apheresis	
3	6 units	4 units	1 apheresis	2 units (pooled)
4	6 units	4 units	1 apheresis	2 units (pooled)



Po	stop r w wh	ecov at?	ery g	joing	well.	Ext	utate	d a	t 0015.
	Adm 2000	2100	2200	2300	2400	0100	0200		
Art B/P	142/52	148/57	106/38	151/45	161/51	142/47	138/48	1.	Routine surgery
MAP	83	86	62	82	94	79	79		<ul> <li>continue to</li> </ul>
HR	68	64	83	74	85	81	86		monitor
Temp	97.2	97.7	99	99.1	98.6	99.3	99.1	2.	Bleeding - call
PAS/PA D	32/17	36/17	29/14	28/12	36/16	23/10	22/11		surgeon
CVP	14	16	13	12	12	8	8	3.	Hypertensive -
SVO ₂	69	72	64	71	71	70	66		start
со	3.5	4.4	3.3	4.5	6.1	4.5	3.8		antinypertensive
CI	1.8	2.2	1.7	2.3	3.1	2.3	1.9		
SVR	1685	1308	1186	1234			1392		
SpO ₂	97	100	100	97	97	98	99		
UO	750	250	375	175	250	425	100		
СТ	210	40	60	20	30	250	290		

	2400	0100	0200	0300	0400	0500
Art B/P	161/51	142/47	138/48	111/40	113/43	91/38
MAP	94	79	79	64	71	58
HR	85	81	86	79	86	108
Temp	98.6	99.3	99.1	99.5	99.5	99.7
PAS/PAD	36/16	23/10	22/11	23/10	26/11	20/12
CVP	12	8	8	8	8	6
SVO ₂	71	70	66	63	62	59
со	6.1	4.5	3.8	3.5	4.2	3.6
CI	3.1	2.3	1.9	1.8	2.1	1.8
SVR			1392	1161		1006
SpO ₂	97	98	99	100	97	98
UO	250	425	100	115	185	
СТ	30	250	290	130	300	190
	200 cc	288 cc			300cc PRBC 40 cc	
	Art B/P MAP HR Tomp PAS/PAD CVP SVO ₂ CO CI SVR SyPO ₂ UO CT	2400           Art B/P         161/51           MAP         94           HR         85           Temp         98.6           PAS/PAD         36/16           CVP         12           SVO2         71           CO         6.1           Cl         3.1           SVR         97           UO         250           CT         30	2400         0100           Art B/P         161/51         142/47           MAP         94         79           HR         85         81           Temp         98.6         99.3           PAS/PAD         36/16         23/10           CVP         12         8           SVO2         71         70           CO         6.1         4.5           CI         3.1         2.3           SVR         -         -           UO         250         425           CT         30         2500           200 cc         288 cc         288 cc	2400         0100         0200           Art B/P         161/51         142/47         138/48           MAP         94         79         79           HR         85         81         86           Temp         98.6         99.3         99.1           PAS/PAD         36/16         23/10         22/11           CVP         12         8         8           SVO2         71         70         66           CO         6.1         4.5         3.8           CI         3.1         2.3         1.9           SVR         1392         SpO2         97         98         99           UO         250         425         100         CT         30         250         290           200 cc         288 cc         280 cc         288 cc         288 cc         288 cc	2400         0100         0200         0300           Art B/P         161/51         142/47         138/48         111/40           MAP         94         79         79         64           HR         85         81         86         79           Temp         98.6         99.3         99.1         99.5           PAS/PAD         36/16         23/10         22/11         23/10           CVP         12         8         8         SVO2         71         70         66         63           CO         6.1         4.5         3.8         3.5         CI         3.1         2.3         1.9         1.8           SVR         1332         1161         SpO2         97         98         99         100           UO         250         425         100         115         CT         30         250         290         130           200 cc         288 cc         290         100         144         140         140         140	2400         0100         0200         0300         0400           Art B/P         161/51         142/47         138/48         111/40         113/43           MAP         94         79         79         64         71           HR         85         81         86         79         86           Temp         98.6         99.3         99.1         99.5         99.5           PAS/PAD         36/16         23/10         22/11         23/10         26/11           CVP         12         8         8         8         8         8           SVO2         71         70         66         63         622           CO         6.1         4.5         3.8         3.5         4.2           CI         3.1         2.3         1.9         1.8         2.1           SVR         1332         1161         -         -         -           UO         250         425         100         115         185           CT         30         250         290         130         300           UO         250         288 cc         288 cc         40 cc cre

It is 0700, calculate t	It is 0700, calculate the CT output and the blood products								
given Are you kee	ping up wi	th the blee	eding?						
Chest tube output 1	660 ml								
0100: 250		2400	700	1					
0200-200	Art B/P	145/44	91/38						
0200.230	HR	82	108						
0300: 130	PAS/PAD	28/12	20/10						
0.400,000	CVP	12	6						
0400: 300	SVO ₂	71	59						
0500.190	со	4.5	3.6						
0000.100	CI	2.3	1.8						
0600: 200	SVR	1186	1006						
0700: 300	Temp	98.6	97						
♥ Ptr	eceived	3 units c	f pRBCs	5					

H				080	) sedated	to keep	from blee	ding. Did	not retur	n to OR
F	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400
Art B/P	91/38	117/40	109/ 42	116/47	106/43	113/46	148/73	145/54	130/58	141/56
MAP	58	75	67	71	65	69	92	83	84	84
HR	108	92	101	92	90	88	83	85	101	99
Temp	99.7	99.3	99.5	99.3	99	99.1	98.8			
PAS/P AD	20/12	37/15	43/1 6	32/17	31/16	67/20	51/20	414/19	33/19	41/20
CVP	6	9	8	12	11	12	13	11	10	11
SVO ₂	59	56	61	66	67	65	68	70		68
со	3.6	4.9	4.2	3.6	3.8	3.5	3.7	3.8		3.4
CI	1.8	2.5	2.1	1.8	1.9	1.8	1.9	1.9		1.7
SVR	1006		1160	1265		1370				
SpO ₂	98	98	94	96	95	94	93	93	92	91
UO		75	75	105	475	375	200	425	325	150
СТ	190	200	300	70	50	250	150	50	50	50
		500 cc Hespan, 300 cc PRBC, 250 cc albumin		325 cc PRBC, 195 cc platelets	325 cc PRCs, 299 cc platelets	325 cc PRBC	325 cc PRBC			

2 nd Case: Based on these products do yo	e coag va u expect	alue to	es, what blood be ordered?
Hbg HCT Platelets PT INR PTT Fibripogen	7.3 21.3 186 21.7 2.23 43.4 108	1. 2. 3. 4.	Packed cells Packed cells, FFP Packed cells, FFP, Cryoprecipitate Packed cells, FFP, Cryoprecipitate. platelets
Lactic Acid	3.1		

After 5 pRBCs, 1 pl Would you anticipat	atelet pheres e any further	is, 3 FFP, 10 blood produ	) cryo. cts?
Hbg	7.3	9.8	
HCT	21.3	28.1	
Platelets	186	115	
PT	21.7	18.7	
INR	2.23	1.09	
PTT	43.4	32.5	
Fibrinogen	108	240	
Lactic Acid	3.1	2.8	



#### Ŧ

#### Cardiac Tamponade: Causes

- Blood accumulated in the chest from:
  - CTs clotted off and unable to drain excess blood
  - · Epicardial wire removal
- May occur quickly within minutes of hours or may occur slowly over days or weeks

#### Cardiac Tamponade: Signs & Symptoms

Hypotension

on CXR

Ħ

- Low urine output
- Rising & equalization of CVP & PAD
- Falling SVO₂, CO/CI
- Sudden decrease in CT output
- Widening mediastinum
   Chest Pain
- Neck Vein Distention
  - Tachycardia
  - Pulses Paradox > 20 mmHG
  - Diminished heart sounds

For tamponade that occurs slowly may also see these S/S:

- Shortness of Breath
- Chest Pain
- Ischemic changes on EKG
- Nausea

#### Cardiac Tamponade

- Beck's Triad
  - Hypotension
  - Neck vein distention
  - · Muffled heart sounds





### Cardiac Tamponade: Treatment

- Urgent surgical exploration to evacuate excess blood & correct cause of the tamponade
- Bedside echo may be used to make differential diagnosis between tamponade & LV failure
- Administer fluids & inotropes or Calcium Chloride until patient can be returned to OR
- Prepare for possible exploration of chest at bedside

005				POD #	1			
	1900	2400	0500	0900	1100	1500	1900	2100
Art B/P	106/85	136/66	122/56	147/59	149/59	140/65	134/62	123/60
MAP	72	81	90	79	76	81	80	77
HR	68	99	105	106	103	111	118	118
PAS/PAD	32/15	32/18	40/21	36/21	35/21	38/23	32/18	32/21
CVP	10	11	15	14	15	16	12	15
SVO ₂	63	64	65	56	55	49	43	41
со	5.8	8.3	11	8.8	8.4	6.7	7.0	6.1
CI	2.5	3.5	4.8	3.8	3.6	2.9	3	2.8
SVR	964	674	634	559	616		743	
SpO ₂	96	96	93	92	94	93	92	92
sv	85	83				62		
UO	600	325	1000	60	125	400	75	150
СТ	60	100	150	50		50		75
	2200	2300	]					
Art B/P	123/59	92/47	1+-	2200	wheet	dove		n+ + n
MAP	76	68	1115	2300,	what	uo yo	ju wa	πιιο
HR	124	125	]					
PAS/PAD	33/22	37/26	]					
CVP	16	19	] 1. F	luids	for hy	φovol	emia	
SVO ₂	40	32	20	lindo	v for ·	tamno	nade	
со	5.2	3.8	2.0	Jurger	y IOI	tampt	Jilaue	
CI	2.2	1.6	] 3. li	notrop	oes fo	r carc	lioger	iic sh
SVR			4 6	)iuroti	oc for	fluid	ovorla	ood.
SpO ₂	92	92	4. L	Jureu	CS 101	nulu	oveno	Jau
sv	42	30	]					
UO	40	30	]					
			1					





















CARC v 3	on Inculin	drin E	ninonhrino	drin	& proceday of	Irin
	UTI III Sulli	unp, L	phiephine	unp,	a preceder c	a ip

PMH: ½ ppd smoker x20 years, depression with use of SSRI's, EF = 30%, HF -- Coreg and Lisinopril

	Admission Vitals
MAP	60
CVP	3
CO/CI	4.5/2.5
SVR	1012

250ml of 5% albumin x 2 administered with no change in SVR/CVP, Neosynephrine drip is started

PMH: ½ HF C	₂ ppd smoker x Coreg and Lisin	20 years, depression	on with use of SSRI's, $EF = 3C$
		Admission Vitals	One Hour Later after albumin & Neosynephrine
	MAP	60	40
	CVP	3	1
	CO/CI	4.5/2.5	4.2/2.1
	C//D	1012	770

What is Cardiac Vasoplegic Syndrome? (Vasodilatory Shock)

- Arterial vasodilatory state resistant to the usual vasopressors post cardiac surgery
- Severe and persistent form of hypotension with:
  - Normal or high cardiac output
  - Low CVP and PAOP
  - Decreased systemic vascular resistance (SVR) <800
- Low filling pressures that are poorly responsive or unresponsive to volume
- ▼ 5-8 % of all patients post cardiac surgery
- Increased morbidity and mortality

#### Why does this happen?

- Huge inflammatory response post cardiac surgery
   -- large quantities of nitric oxide released
  - Cardiopulmonary bypass
  - Surgical trauma
  - Blood loss
  - Blood transfusions
  - Hypothermia
  - Neutralization of heparin with protamine
- Nitric Oxide produces profound vasodilation and vasoplegia

Result: Loss of vasomotor tone and vasodilation

#### Ŧ

#### At Risk population:

- Preoperative heart failure
  - EF < 35%
  - End stage HF requiring assist device
- Numerous preop antihypertensive medications
  - ACE inhibitors, ARBs, Beta Blockers, Calcium Channel blockers
- Use of pre and post Amiodarone and Phosphodiasterase inhibitors (Milrinone)

#### Ŧ₽

#### Treatment for Cardiac Vasoplegic Syndrome

Methylene Blue (Tetramethylthionin chloride)

- Interferes with the nitric oxide pathway and inhibits the vasorelaxant effect on smooth muscle
- Can raise mean arterial pressures while minimizing the use of vasopressors
- Usually given pre-op or inter-op to prevent CVS
- Bolus dose of 1-2mg/kg over 10-20 min followed by an infusion of 0.25mg/kg/hr for 48-72 hours, do not exceed 2mg/kg

#### Ŧ

Treatment for Cardiac Vasoplegic Syndrome

Phenylephrine, Norepinephrine or Vasopressin

- Treats refractory hypotension when used in conjunction with Methylene Blue
- Potent vasoconstrictor

#### Nursing Role

- Early identification of Cardiac Vasoplegic Syndrome
- Notification to cardiac surgeon
- ▼ DO NOT KEEP GIVING VOLUME!











## 0245 – about 5 hours post op SpO₂ drops to 90 – 91% BP 95/62 HR 106 One hour prior: BP 118/81, HR 87, RR 12, SpO₂ 100 on 80% vent

	Admission 2122	0200	0248 Now
pН	7.33	7.47	7.49
pCO2	50	36	36
pO2	79	81	56
TCO2	28	27	29
02 sat	95	97	91
BE	0.5	2.5	4.1
Hemoglobin	11.2	11.5	10.9
Hematocrit	36	37	35
Glucose	125	147	133
Potassium	4.8	4.6	4.4

Clear bilateral lung sounds except diminished right upper lobe

















#### **Pulseless Electrical Activity (PEA)**

- Cardiac surgery patients who arrest with PEA are typically experiencing treatable causes
  - Hypovolemia -- severe
  - Hypoxia
  - Tamponade
  - Tension pneumothorax
- Prompt treatment results in good outcomes
- To assess for causes of PEA/nonschockable rhythm • Consider the 4 "Hs" and 4 "Ts

	Four HS	Four TS
Assess for Reversible	Hypoxia *	Tamponade *
Causes	Hypovolemia*	Tension Pneumothorax
	Hypokalemia/ Hyperkalemia	Thromboembolism
	Hypothermia	Toxin
	* = Most common causes of	f cardiac surgery arrests

Hypoxia	Hypovolemia and Tamponade
<ul> <li>Treat per airway management and assessment</li> </ul>	<ul> <li>Severe hypovolemia is typically due to bleeding</li> <li>Severe hypovolemia and tamponade both require emergent resternotomy to correct</li> </ul>

#### Steps to Ensure Adequate Airway and Ventilation

- Check endotracheal tube (ET) position and end tidal carbon dioxide (EtCO₂) waveform and reading
- Listen for an ETT airleak and verify that is properly inflated
- Listen and look for bilateral breath sounds.
  - Consider removing the patient from the ventilator and give 100% oxygen via bag-mask-valve to more easily assess lung sounds and determine lung compliance
  - If bilateral lung sounds are present, reconnect the ETT to ventilator.

#### Steps to Ensure Adequate Airway and Ventilation (continued)

- Feel the trachea to verify it is midline.
- If a tension pneumothorax is suspected, insert a large bore needle into the 2nd intercostal space, midclavicular line.
- If unable to ventilate the patient with a bag-mask-valve, attempt to suction the ET tube.
  - If unable to pass the suction catheter, ETT occlusion or malposition should be suspected.
  - Remove the ETT and ventilate with a bag-mask-valve.

#### Prepare for Emergency Resternotomy

- Six Key Roles
  1. External cardiac
  massage
- 2. Management of airway and breathing
- 3. Defibrillation
- 4. Team leader
- 5. Medication administration
- 6. ICU nursing Coordinator



# Warning Signs of Trouble Tachycardia Persistent tachycardia is a compensatory mechanism Cool extremities Diminished peripheral pulses Changes in mentation Decreased urine output Hypotension





